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The flow pattern generated by a sphere accelerated from rest by a small constant
applied force shows scaling behaviour at long times, as can be shown from the
solution of the linearized Navier–Stokes equations. In the scaling regime the kinetic
energy of the flow grows with the square root of time. For two distant settling spheres
starting from rest the kinetic energy of the flow depends on the distance vector
between centres; owing to interference of the flow patterns. It is argued that this
leads to relative motion of the two spheres. The corresponding interaction energy is
calculated explicitly in the scaling regime.

1. Introduction
When a sphere immersed in a quiescent viscous incompressible fluid is accelerated

from rest by a constant applied force, starting at time t = 0, it starts to move with
initial acceleration corresponding to the sum of its own mass and the added mass
of the surrounding fluid. The added mass can be calculated from the theory of
irrotational flow (Lighthill 1986). If the force is sufficiently small, corresponding to
low Reynolds number, the flow pattern and the motion of the sphere at later times
can be calculated from the linearized Navier–Stokes equations (Felderhof 2007a).
The sphere speeds up gradually with decreasing acceleration, and reaches a constant
Stokes velocity. The final velocity is used to define the steady-state friction coefficient.

When a pair of identical spheres with initial centre-to-centre vector R is accelerated
similarly, then at low Reynolds number they move in tandem at constant R with a
time-dependent velocity depending on the distance vector. The distance-dependence
is caused by hydrodynamic interactions. Owing to a reciprocity theorem the time-
dependent six-dimensional mobility matrix has the same symmetry as for steady-state
Stokes flow (Kim & Karrila 1991). It was found experimentally by Jayaweera, Mason
& Slack (1964) that two spheres settling side-by-side slowly increase their distance
apart. This was ascribed to residual inertial effects (Hocking 1964). In the following
we propose a theory for the effect for the limiting case where the initial separation
distance is large compared with the sphere radius.

The theory is based on a calculation of the kinetic energy of the flow generated by
the two spheres. For a single sphere the kinetic energy grows with time, eventually
in proportion to the square root of time, with a coefficient which is universal, i.e.
independent of the radius of the sphere, its mass, or the boundary condition applied
at the surface. In the long-time limit the flow pattern and the deviation of the sphere
velocity from its final Stokes value show universal scaling behaviour. For a pair of
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spheres which are sufficiently far apart the generated flow is a linear superposition of
two such scaling flow patterns. Since the kinetic energy is quadratic in the local flow
velocity there is an interference of flow patterns, and the total kinetic energy depends
on the distance vector between centres. We appeal to irreversible thermodynamics
(Einstein 1906; Onsager 1931) to argue that this causes an interaction force between
the two spheres. We find that in the long-time limit the force is repulsive if the applied
force is directed along R, but is attractive at large distance if the applied force is
transverse to R. In the latter case the force becomes repulsive at shorter distance.
The distance corresponding to the minimum of kinetic energy, where the interaction
force vanishes, grows as the square root of time.

The scaling flow pattern of a single sphere can be found from the Green function
of the linearized Navier–Stokes equations. We first discuss the Green function,
corresponding to a point particle set in motion by a delta-function force pulse,
and show that the kinetic energy of the flow pattern decays with a t−3/2 power
law. The kinetic energy is calculated conveniently from the Stokes stream function
representation of the Green function. We compare this with the kinetic energy of the
flow generated by a sphere subject to a force pulse, and show that at long times the
latter shows scaling behaviour. Subsequently we perform the same comparison for a
sphere subject to a constant force starting at t = 0. In this case the energy of the
scaling flow pattern increases as

√
t . Finally we consider a pair of identical spheres

and calculate the kinetic energy of the total flow in the scaling limit. In this limit we
find an explicit expression for the anisotropic interaction energy.

2. Scaling limit
We consider a sphere of radius a and mass mp immersed in a viscous incompressible

fluid of shear viscosity η and mass density ρ. Mixed slip–stick boundary conditions are
applied at the surface of the sphere. Elsewhere (Felderhof 2007b) we have found the
flow pattern after a sudden small impulse applied at the centre of the sphere, as calcu-
lated from the linearized Navier–Stokes equations. In the long-time limit the solution
shows scaling behaviour, as shown earlier (Cichocki & Felderhof 2000) from a study
of the low-frequency limit of the Fourier transform of the flow pattern with respect
to time. The scaling behaviour corresponds to the Green function of the linearized
Navier–Stokes equations. We first study the Green function in some more detail.

The Green function of the linearized Navier–Stokes equations for a viscous
incompressible fluid is a tensor giving the flow velocity at any point in space at
any time due to a delta-function force pulse. The fluid is of infinite extent and
assumed to be at rest for t < 0. We take the force pulse to be applied at the origin at
t = 0. Then the equations to be solved are

ρ
∂v

∂t
= η∇2v − ∇p + Sδ(r)δ(t), ∇·v = 0, (1)

where v(r, t) is the flow velocity, and p(r, t) is the pressure. Here S has the dimension
of momentum. We write the flow velocity for t > 0 as

v(r, t) =
1

4πη
T(r, t)·S. (2)

The explicit expression for the tensor T(r, t) was first derived by Oseen (1927). It
can also be derived from the Fourier transform of equations (1) with respect to time
(Cichocki & Felderhof 2000). The tensor is given by

T(r, t) = 1
1√

4πνt3/2
exp(−r2/4νt) + ν∇∇erf(r/

√
4νt)

r
, (3)
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where ν = η/ρ is the kinematic viscosity. More explicitly

T(r, t) =
exp(−r2/4νt)√

4πνt3/2

[(
1+2

νt

r2

)
1−

(
1+6

νt

r2

)
r̂ r̂

]
+ν

−1 + 3r̂ r̂
r3

erf

(
r√
4νt

)
. (4)

The time-integral of the tensor is

T0(r) =

∫ ∞

0

T(r, t) dt =
1 + r̂ r̂

2r
. (5)

This is the familiar Oseen-tensor solution of the steady-state Stokes equations. The
pressure generated by the impulse is

p(r, t) =
1

4π

r̂·S
r2

δ(t). (6)

The long-range pressure field is established instantaneously, because the fluid is
incompressible. There is a corresponding long-range dipolar flow field, as is evident
from the limit t → 0+ in (4),

T(r, 0+) = 4πν1δ(r) + ν
−1 + 3r̂ r̂

r3
. (7)

The dipolar flow field decays at later times due to viscous dissipation.
The tensor T(r, t) can be expressed in terms of a Stokes stream function Ψs(r, t),

since the flow field v(r, t) given by (2) is axisymmetric. The subscript s refers to the
scaling limit. Taking the z-axis in the direction of the initial impulse, and introducing
polar coordinates (r, θ, ϕ) in the familiar way (Happel & Brenner 1973) we can write
the velocity field as

vs(r, t) = ∇ ×
(

Ψs(r, θ, t)

r sin θ
eϕ

)
, (8)

with spherical components

vsr =
1

r2 sin θ

∂Ψs

∂θ
, vsθ = − 1

r sin θ

∂Ψs

∂r
, vsϕ = 0. (9)

It follows from (8) that

(vs ·∇)Ψs = 0, (10)

so that the stream function is constant along the streamlines. By comparison with (4)
the explicit expression is

Ψs(r, θ, t) =
S

4πη
χs(r, t) sin2 θ (11)

with radial function

χs(r, t) =
ν

r
erf

(
r√
4νt

)
−

√
ν

πt
exp

(
− r2

4νt

)
. (12)

The stream function is found to satisfy the partial differential equation

∂Ψs

∂t
= νE2Ψs, (13)

where E2 denotes the differential operator

E2 =
∂2

∂r2
+

sin θ

r2

∂

∂θ

(
1

sin θ

∂

∂θ

)
. (14)
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Figure 1. The streamlines for the flow corresponding to the velocity field given by (8) at
time t = 1 for impulse S = 1 and kinematic viscosity ν = 1.

The stream function representation of the flow field is almost as simple as the one
given in (3), but it has the advantage of the property (10) which allows easy plotting of
the streamlines. Also it is immediately obvious from (8) that ∇·vs = 0. In figure 1 we
plot the streamlines at a particular value of time, as given by the contours of constant
stream function Ψs(r, t). It is evident that the flow is characterized by an expanding
vortex ring, as for a suddenly accelerated sphere (Felderhof 2007b). Because in (1)
we use a monopole approximation, the scaling flow pattern is independent of the slip
coefficient.

The kinetic energy of the flow field is defined by

Ts(t) =
1

2
ρ

∫
v2

s (r, t) dr. (15)

From (2) one finds

Ts(t) =

(
S

4πη

)2
1

3
ρ

√
πν

2t3
for t > 0. (16)

This shows a characteristic power-law decay.
The fluid momentum is not properly defined, since the integral over all space of

the fluid velocity does not converge absolutely. With the integration prescription that
the integral over angles is performed first it takes the value

ρ

∫ ′
vs(r, t) dr = 2

3
S, (17)

where the prime on the integral sign is a reminder of the prescription. It has been
argued that at t = 0 one-third of the imparted momentum is transported to infinity
by sound waves (Cichocki & Felderhof 2000). For finite sound velocity the integral
converges absolutely to value S, and no integration prescription is needed (Felderhof
2007c). The power law decay in (16) follows qualitatively from the observation that
at time t the characteristic length of momentum diffusion is λ(t) =

√
4νt , and that
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according to the conservation law (17) the velocity in a sphere of volume λ3 centred
at the origin decays in proportion to t−3/2.

The long-time behaviour of the velocity of the accelerated sphere is independent
of its mass, its radius, and of the slip coefficient. The scaling velocity may be found
from the behaviour of the Green function at the origin (Cichocki & Felderhof 2000).
It is given by

U s(t) =
1

12ρ(πνt)3/2
S. (18)

The physical reason for the independence of mass, radius, and slip coefficient is that
at long times the fluid flow pattern is given by the universal scaling form derived
above. We define the corresponding scaling mass ms(t) from the identity

Ts(t) = 1
2
ms(t)U s(t)

2. (19)

From (16) and (18) we find

ms(t) = 3
√

2ρ(πνt)3/2. (20)

The generalized momentum

Pgs =
∂Ts

∂U s

= ms(t)U s(t) (21)

is conserved, and takes the value

Pgs =
1

2
√

2
S. (22)

Note that this differs from the value given by (17).

3. Energy of flow about an accelerated sphere
The flow field around a sphere accelerated by a force E(t) applied at the centre

and with mixed slip–stick boundary conditions applied at the surface of the sphere
can be studied by the method of Fourier transform (Albano, Bedeaux & Mazur
1975; Felderhof 1976; Felderhof & Jones 1986). Owing to the applied force the
sphere acquires a velocity U(t), which can be evaluated from the frequency-dependent
admittance (Felderhof 1991). In the rest frame of the sphere the Navier–Stokes
equations for the flow field v′(r, t) are

ρ

[
∂v′

∂t
+ (v′·∇)v′

]
= η∇2v′ − ∇p − ρ

dU
dt

, ∇·v′ = 0. (23)

The flow field v′(r, t) in the rest frame and the flow field u(r0, t) in the laboratory
frame are related by

v′(r, t) = u(r0, t) − U(t), (24)

and the coordinates in the two frames are related by

r = r0 −
∫ t

0

U(t ′) dt ′. (25)

We write the solution of (23) as

v′(r, t) = −U(t) + v(r, t), (26)
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with the field v(r, t) tending to zero as r → ∞. Substituting into (23) and linearizing
for small velocity U(t) one finds that v(r, t) satisfies the linear equations

ρ
∂v

∂t
= η∇2v − ∇p, ∇·v = 0 for r > a. (27)

These are the equations solved by a Fourier transform with respect to time in Albano
et al. (1975).

It follows in particular from (24) and (26) that∫
V0(t)

u(r0, t)
2 dr0 =

∫
r>a

v(r, t)2 dr, (28)

where V0(t) is the volume complementary to the moving sphere. Therefore the energy
in the laboratory frame can be calculated from the solution v(r, t) in the rest frame.
The time-dependent flow field for a delta-function force pulse and for a constant force
acting during a time interval T was found in Felderhof (2007a,b).

We consider first a delta-function pulse corresponding to an applied force E(t) =
Sδ(t). The resulting sphere velocity in the laboratory frame is

U(t) =
S

m∗ F (t), (29)

where m∗ = mp + 1
2
mf is the effective mass (Lighthill 1986), with mass mf = 4

3
πρa3,

and F (t) is the normalized velocity relaxation function

F (t) =

3∑
j=1

Ajxjw(−iqj

√
νt), (30)

where w(z) is the w-function (Abramowitz & Stegun 1965), and qj = xj/a. The three
values {xj } are the zeros of a cubic derived from the frequency-dependent impedance,
and the amplitudes {Aj } are corresponding residues (see equations (97)–(102) of
Felderhof 2007b). The initial value of the relaxation function is F (0+) = 1.

The kinetic energy of the fluid is defined by

Tf (t) =
1

2

∫
r>a

ρv(r, t)2 dr. (31)

We have not found an analytic form for the energy Tf (t). With a stream function
representation analogous to (8) it can be expressed as a radial integral,

Tf (t) =
4π

3
ρ

∫ ∞

a

[(
∂χ(r, t)

∂r

)2

+
2

r
χ(r, t)2

]
dr, (32)

where the radial function χ(r, t) can be written as the sum of a pressure part and a
viscous part. The pressure part is in normalized form (Felderhof 2007b)

ψP ∗(r, t) =
QF (t)

r
, (33)

with dipole strength

QF (t) = 1
2
(1 − 3Z)a3F (t) + 3

2
Za3, (34)

where Z = 2m∗/9mf . The expanding viscous boundary layer is described by a second
scalar function ψV ∗(r, t), given explicitly by equation (40) of Felderhof (2007a). The
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Figure 2. log Tf (t) after a sudden impulse S = 1, as given by (32), as a function of log10 t for
a sphere with Z = 2m∗/9mf = 1/3 (short dashes). We compare with the total energy log T(t),
as given by (39) (solid curve), and with the scaling expression given by (16) (long dashes).

scalar function to be used in (32) is

χ(r, t) =
S

m∗ [ψP ∗(r, t) + ψV ∗(r, t)]. (35)

At short times the viscous part vanishes and the flow is irrotational. At long times
the flow is close to that given by the Green function in § 2. At large distance the flow
becomes dipolar. We note that 6πρZa3 = m∗, showing that the long-time value of
the dipole strength agrees with that of the scaling flow.

From (32)–(34) one finds for the initial value of the fluid kinetic energy

Tf (0+) = 1
4
mf

(
S

m∗

)2

= 1
4
mf U (0+)2, (36)

in agreement with potential flow theory (Lighthill 1986). At long times we expect

Tf (t) ≈ Ts(t) as t → ∞, (37)

with Ts(t) given by (16). In figure 2 we show the behaviour of the energy as a
function of time for a sphere with Z = 1/3 and for stick boundary conditions. In all
figures we use units such that the sphere has radius a = 1 and the fluid has mass
density ρ = 1 and shear viscosity η = 1.

The total kinetic energy of sphere and fluid is

T(t) = Tp(t) + Tf (t) = 1
2
mpU(t)2 + Tf (t). (38)

This can be used to define the time-dependent virtual mass mv(t) by

T(t) = 1
2
mv(t)U(t)2. (39)

At short times

mv(0+) = mp + 1
2
mf = m∗, (40)

where ma = 1
2
mf is the added mass of potential flow theory (Lighthill 1986). At long

times the virtual mass shows scaling behaviour,

mv(t) ≈ ms(t) as t → ∞, (41)
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Figure 3. log mv(t) after a sudden impulse, where mv(t) is the virtual mass defined in (40),
as a function of log10 t for a sphere with Z = 2m∗/9mf = 1/9 (solid curve), Z = 1/3 (long
dashes), and Z = 1 (short dashes).
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Figure 4. log mv(t)F (t)/m∗ after a sudden impulse S = 1 as a function of log10 t for a sphere
with Z = 2m∗/9mf = 1/9 (solid curve), Z = 1/3 (long dashes), and Z = 1 (short dashes).

independent of the mass mp , the radius a, and the slip parameter. In figure 3 we show
the time-dependence of the virtual mass for three values of the parameter Z and for
stick boundary conditions. From (18) and (29) it follows that the long-time behaviour
of the velocity relaxation function is given by

F (t) ≈
m∗

12

√
ρ(πηt)−3/2 =

1

2
√

2

m∗

ms(t)
as t → ∞. (42)

In figure 4 we plot the behaviour of the product mv(t)F (t)/m∗ for three values of Z

and stick boundary conditions. This shows that the generalized momentum

Pg(t) =
∂T
∂U

= mv(t)U(t) (43)

is time-dependent. The initial value is Pg(0+) = S, and in the scaling limit Pgs =

S/2
√

2, as in (22). The time-dependence is caused by dissipation.
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4. Constant applied force
Next we consider a constant force applied to the centre of the sphere and starting

at time t = 0,

E(t) = E0H (t), (44)

where H (t) is the Heaviside step-function. We denote the corresponding sphere
velocity as U(t) and the position of the centre of the sphere in the laboratory frame
as

R0(t) =

∫ t

0

U(t ′) dt ′. (45)

We take the position in the rest frame to coincide with the origin. For large t the
position R0(t) can be far from the origin of the laboratory frame.

In particular we consider the kinetic energy of the flow field at time t . For sufficiently
large t this can again to a good approximation be found from the Green function.
Thus instead of the scalar function in (12) we consider its time integral

χs(r, t) =

∫ t

0

χs(r, t
′) dt ′ =

r

2
erfc

(
r√
4νt

)
+ tχs(r, t). (46)

This provides the flow disturbance in the rest frame at time t . The flow vs(r, t) is
given by

vs(r, t) =
E0

4πη
∇ ×

(
1

r
χs(r, t) sin θ eϕ

)
. (47)

We write

χs(r, t) = 1
2
r + �χs(r, t). (48)

The first term corresponds to the steady-state Oseen tensor, which is singular at r = 0.
The second term corresponds to a flow which is regular at r = 0. From the value at
r = 0 we find the scaling velocity

�U s(t) = − E0

6π3/2η
√

νt
. (49)

This corresponds to the long-time correction to the terminal velocity E0/ζ0 of
the sphere (Felderhof 2007a), where ζ0 is the steady-state friction coefficient. The
correction term is independent of the mass and size of the sphere and of the slip
parameter (in equations (17) and (18) of Felderhof (2007a) a factor

√
π is missing in

the denominator). The complete expression for the velocity of the sphere is

U(t) =
E0

m∗ G(t) (50)

with response function G(t) given by

G(t) =

∫ t

0

F (t ′) dt ′. (51)

The expression for the integral is given in Felderhof (2007a), equations (10), (11). The
sphere speeds up, starting with initial acceleration E0/m∗, and reaching the Stokes
velocity E0/ζ0.

The kinetic energy of the disturbance corresponding to (47) is

Ts(t) =

(
E0

4πη

)2
8

3
(2 −

√
2)ρ

√
πνt. (52)
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Figure 5. log T(t) for applied force E0 = 1 as a function of log10 t for a sphere with
Z = 2m∗/9mf = 1/9 (solid curve), Z = 1/3 (long dashes), and Z = 1 (short dashes). We
compare with the scaling expression given by (52) (solid straight line).

This can be used to define the scaling mass ms(t) by

Ts(t) = 1
2
ms(t)

(
�U s(t)

)2
, (53)

which yields the expression

ms(t) = 12(2 −
√

2)ρ(πνt)3/2. (54)

The numerical value of the coefficient is 12(2 −
√

2) = 7.029. This is to be compared
with the value 3

√
2 = 4.243 in (20).

Corresponding to (52) we expect that for the flow about a sphere the energy of
the flow disturbance vanishes at t = 0, and after transient effects grows in the same
manner in proportion to

√
t at long times. The total energy at time t is

T(t) = Tp(t) + Tf (t) = 1
2
mpU(t)2 + Tf (t). (55)

This can be used to define the time-dependent virtual mass mv(t) by

T(t) = 1
2
mv(t)

[
U(t) − E0

ζ0

]2

. (56)

Scaling behaviour implies mv(t) ≈ ms(t) at long times. In figure 5 we plot the total
energy T(t) as a function of time for three values of Z and stick boundary conditions,
and compare with the scaling expression (52).

5. Pair interaction
We consider two identical spheres under the influence of a constant force E0

starting at time t = 0. Initially the spheres are at rest at positions R1(0), R2(0) with
distance vector R(0) = R2(0) − R1(0). If the distance is sufficiently large compared
with the radius a we expect that hydrodynamic interactions between the two spheres
may be evaluated from the scaling flow patterns of both spheres. This suggests that to
a good approximation the rate of change of both positions is given by the equations
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of transient Stokesian dynamics

dR1

dt
= U(t) +

1

4πη
T(R1(t) − R2(t), t)·E0,

dR2

dt
= U(t) +

1

4πη
T(R2(t) − R1(t), t)·E0,


 (57)

with the tensor
T(r, t) =

∫ t

0

T(r, t ′) dt ′. (58)

The flow in (47) can be expressed as

vs(r, t) =
1

4πη
T(r, t)·E0. (59)

From (3) we find the expression

T(r, t) = 1
erfc(r/λ)

r
+ ∇∇

[
νt

r
erf

r

λ
+

√
νt

π
e−r2/λ2 −

r

2
erfc

(
r

λ

)]
, (60)

with λ =
√

4νt . Since T(−r, t) = T(r, t), it follows from these equations that the
distance vector R = R2(t) − R1(t) is independent of time.

We suggest in the following that the distance vector does change owing to inertial
effects. We perform a calculation of the kinetic energy of the flow in the scaling regime.
It turns out that the energy depends on the distance vector owing to interference of
the two flow patterns. It follows from non-equilibrium thermodynamics that this
results in a force between the two spheres.

Since to lowest order the relative distance vector is constant, we can use a coordinate
system in which both spheres are at rest at time t . The origin of the rest frame moves
with respect to the laboratory frame with a velocity given by the right-hand side of
(57). The total kinetic energy of the flow disturbance in the scaling regime takes the
form

Ts(R, t) = T11s(t) + T22s(t) + T12s(R, t), (61)

where the first two terms are equal and given by the single-sphere expression (52),
and the last term takes the value

T12s(R, t) = ρ

∫
vs(r, t)·vs(r − R, t) dr, (62)

with flow vs(r, t) given by (59). We calculate the integral by use of Parseval’s theorem.
Thus we define the spatial Fourier transform

v̂s(k, t) =

∫
exp(−ik·r)vs(r, t) dr. (63)

Then the integral in (62) is given by

T12s(R, t) =
ρ

8π3

∫
|v̂s(k, t)|2 exp(ik·R) dk. (64)

The Fourier transform of the Green function is given by

T̂(k, t) = 4πν(1 − k̂k̂)e−k2λ2/4. (65)

The Fourier transform of the time-integral is

T̂(k, t) = 4π(1 − k̂k̂)
1 − e−k2λ2/4

k2
. (66)
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Hence

T12s(R, t) =
ρ

8π3η2

∫
E0·(1 − k̂k̂)·E0

(1 − e−k2λ2/4)2

k4
exp(ik·R) dk. (67)

This results in

T12s(R, t) =
λρ

8π3/2η2
E0·U(R, t)·E0, (68)

with tensor

U(R, t) = X

(
R

λ

)
1 + λ2 ∂2

∂ R∂ R
Y

(
R

λ

)
, (69)

where the scaling function X(s) with s = R/λ is given by

X(s) = 2e−s2 −
√

2e−s2/2 −
√

πs +
√

π

(
2s +

1

s

)
erf s −

√
π

(
s +

1

s

)
erf

s√
2
, (70)

and the function Y (s) is given by

Y (s) =
1

12

(√
πs3 − (5 + 2s2)e−s2

+
√

2(5 + s2)e−s2/2
)

−
√

π

24s

(
3 + 12s2 + 4s4

)
erf s

+

√
π

12s

(
3 + 6s2 + s4

)
erf

s√
2
. (71)

At s = 0 the functions take the values

X(0) = 2(2 −
√

2), Y (0) = 2
3
(
√

2 − 1). (72)

We note that for an isotropic function f (R)

E0·∂
2f (R)

∂ R∂ R
·E0 = E2

0

[
d2f

dR2
cos2 Θ +

1

R

df

dR
sin2 Θ

]
, (73)

where Θ is the angle between R and E0. Hence we find that the interaction energy
can be expressed as the sum of an isotropic and an anisotropic part,

T12s(R, t) =
λρE2

0

8π3/2η2
[V (s) + A(s)P2(cosΘ)], (74)

where

V (s) = X(s) +
1

3
Y ′′(s) +

2

3s
Y ′(s), A(s) =

2

3
Y ′′(s) − 2

3s
Y ′(s). (75)

The isotropic part is given by

V (s) =
2

3

(
2e−s2 −

√
2e−s2/2

)
− 2

√
π

3

(
s −

(
2s +

1

s

)
erf s +

(
s +

1

s

)
erf

s√
2

)
, (76)

and the anisotropic part by

A(s) =
1

6s2

(
(3 − 2s2)e−s2 − (3 − s2)

√
2e−s2/2

)

+

√
π

12s3

(
2s4 − (3 − 4s2 + 4s4)erf s + 2(3 − 2s2 + s4)erf

s√
2

)
. (77)

At small distance

V (s) =
4

3
(2 −

√
2) + O(s), A(s) =

√
π

6
s + O(s2). (78)
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Figure 6. The isotropic potential V (s) (solid curve), the anisotropic potential A(s) (long
dashes), and of the combination V (s) − 1

2
A(s) relevant for Θ = π/2 (short dashes).

The first equality is in agreement with the value of the interaction energy at R = 0,
as given by (52), since it follows from (62) that

T12s(0, t) = 2Ts(t). (79)

At long distance the isotropic term V (s) tends to zero rapidly, but the anisotropic
term A(s) tends to

√
π/(4s3), so that the interaction given by (74) is dipolar at long

range. In figure 6 we plot the scaling functions V (s) and A(s), as well as the function
V (s) − 1

2
A(s) corresponding to Θ = π/2. Remarkably, the latter function shows a

minimum. It has a zero at s0 = 1.393, and a minimum at sm = 1.944, where the
function takes the value V (sm) − 1

2
A(sm) = −0.01645. In figure 7 we show a contour

plot of the quantity V (s) + A(s)P2(cosΘ).
The kinetic energy T(R, t) makes a distance-dependent contribution to the non-

equilibrium free energy of the entire system. We argue on the basis of a general
principle of irreversible thermodynamics (Einstein 1906; Onsager 1931) that the rate
of change of the distance vector is proportional to the gradient of the non-equilibrium
free energy with respect to R. In the long-time limit and for large distance the
proportionality factor is given by just the steady-state single-sphere mobility. On
these grounds we replace (57) by

dR1

dt
= U(t) +

1

4πη
T(R1 − R2, t)·E0 − µ0

∂T12s(R1 − R2, t)

∂ R1

,

dR2

dt
= U(t) +

1

4πη
T(R2 − R1, t)·E0 − µ0

∂T12s(R1 − R2, t)

∂ R2

,

⎫⎪⎪⎬
⎪⎪⎭ (80)

where µ0 = 1/ζ0. Subtracting the two equations one sees that the inertial force causes
a change of the relative distance vector. Qualitatively the nature of the driving force
corresponds with the experiments by Jayaweera et al. (1964). The steady-state friction
coefficient ζ0 depends on the slip coefficient. It is given by ζ0 = 6π(1 − ξ )ηa, with slip
parameter ξ = 0 for stick boundary conditions and ξ = 1/3 for perfect slip (Felderhof
1976).

More generally, for N settling spheres the equations of motion are

dRj

dt
= U(t)+

1

4πη

N∑
k 	=j

T(Rj − Rk, t)·E0 − µ0

N∑
k 	=j

∂T12s(Rj − Rk, t)

∂ Rj

, j = 1, ..., N.

(81)
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Figure 7. Contour plot of the potential V (s) + A(s)P2(cosΘ). The thick line corresponds to
vanishing potential. To the left of the line the potential is positive, to the right it is negative.

Since the hydrodynamic interaction is limited to a single propagator, many-body
effects are neglected and only the simplified pair interaction is taken into account.
The explicit expressions for the pair interaction derived above allow a study of the
dynamics of N spheres by numerical solution of these equations. The results should
be compared with computer simulation and experiment. Both pair interaction terms
are dipolar at long range.

We compare the pair interaction derived above with the effective interaction force
found in the theory of irrotational flow. For simplicity we consider only the behaviour
at large distance. According to classical results described by Lamb (1932) the distance
dependence of the kinetic energy gives rise to a force between two moving spheres.
The force is repulsive when the two velocity vectors are in the same direction along
the line of centres, and attractive when the two velocity vectors are in the same
direction perpendicular to the line of centres. The results can be summarized in an
expression for the kinetic energy valid at large distance. For two spheres of radii a

and b this becomes

Tirr = 1
2
m∗

1U2
1 + 1

2
m∗

2U2
2 − πρa3b3U1·−1 + 3R̂ R̂

R3
·U2, (82)

where m∗
1 and m∗

2 are the two effective masses. The vector form presented in (82) is
new. The acceleration of the two spheres is calculated from the kinetic energy by use
of Lagrange’s equations of motion. For equal velocities the dipolar interaction term
can be expressed as

Tirr12 = −2πρa3b3 U 2
1

R3
P2(cos Θ ′), (83)
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where Θ ′ is the angle between U1 and R. This can be compared with the large-distance
behaviour of the interaction energy in (83), which is given by

Tdip

12s (R, t) =
λ4ρE2

0

32πη2R3
P2(cosΘ). (84)

Thus the two interaction energies are of opposite sign, if to lowest order we neglect
the interactions in (80) and identify Θ and Θ ′. Nonetheless, because in the case of
(83) the accelerations are calculated by use of Lagrange’s equations, and in the case
of (84) the velocities are calculated from the negative gradient with respect to the
distance vector, both expressions lead to qualitatively the same result. In the case of
(84) the two spheres tend to move apart when the applied force is directed along the
line of centres, and they tend to move together when the applied force is directed
perpendicular to the line of centres. Note that the amplitude in (84) increases with
time as t2.

The solution of the pair equations of motion (80) is best performed in terms
of centre-of-mass and relative coordinates. The equation of motion for the relative
coordinate vector becomes in the scaling regime

dR
dt

= −2µ0

∂T12s(R, t)

∂ R
. (85)

For the situation considered by Jayaweera et al. (1964), where the two spheres start
from rest at positions R1(0) and R2(0), one can first solve numerically up to a time
t0 when transient effects are past and the scaling regime has been reached. In the
scaling regime it is convenient to use scaled coordinates. The relative distance vector

becomes R = λs. We take out the factor λ in (74) by defining T̂12s = T12s/λ. Then
the transformed equation of motion for the vector s becomes

ds
du

= − ∂

∂s

(
s2

u
+

µ0√
ν

∂T̂12s

∂s

)
, u = 2

√
t . (86)

This shows that the point s(u) is driven towards the minimum of the u-dependent
potential given by the quantity in brackets. By symmetry the motion takes place in a
polar plane, say the (sxsz)-plane. As u tends to infinity the first term in brackets tends

to zero, so that s(u) tends to the minimum of T̂12s at (sx, sz) = (sm, 0). This implies
that the relative distance vector tends towards Rm(t) =

√
4νt(sm, 0, 0), with distance

increasing as
√

t .

6. Discussion
We have endeavoured to calculate the kinetic energy of the transient flow about a

single sphere and about a pair of spheres moving in a viscous fluid after a suddenly
applied impulse. At short times the kinetic energy follows from the theory of potential
flow and is used conventionally to calculate effective mass and interaction energy. At
long times the flow shows scaling behaviour. In this regime the kinetic energy decays
with a t−3/2 power law. We have also considered the transient flow after a constant
applied force is applied starting from rest at time t = 0. For a pair of spheres the
energy depends parametrically on the distance vector between the two centres. We
have argued that this dependence gives rise to a hydrodynamic force acting between
the two spheres. The distance-dependence of the force in the scaling regime is in
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qualitative agreement with the experiments of Jayaweera et al. (1964) on settling
spheres.

Time-dependent hydrodynamic interactions between two spheres have been
measured experimentally for two trapped spheres (Atakhorrami et al. 2005),
corresponding to the frequency-dependent response in the linear regime. The
additional interaction discussed above is nonlinear and quadratic in the applied
force. It follows from a reciprocal theorem (Kim & Karrila 1991) that in the linear
regime the relative distance vector between a pair of identical settling spheres remains
constant. The distance vector changes only owing to the nonlinear interaction.

Small inertial effects in steady flow in the presence of one or two walls have been
studied by many authors, both experimentally and theoretically (Brenner 1966; Leal
1980; Feuillebois 2004). The calculations are based on a solution of the Navier–Stokes
equations in regular or singular perturbation theory. Most of the calculations pertain
to a single particle, not necessarily spherical. It has been suggested that the motion
tends to a final steady state of minimum dissipation (Jeffery 1922), but experimentally
states of maximum dissipation have been observed (Karnis, Goldsmith & Mason
1966). Inertial interactions between two disks confined by two lines were studied in
lattice-Boltzmann simulations by Aidun & Ding (2003).

Elsewhere we have performed a calculation of the kinetic energy of the flow
generated by two steadily settling distant particles between two walls, and suggested
that the distance-dependence of the energy in the limit of widely separated walls gives
rise to a repulsive interaction force (Felderhof 2005). The present calculation in the
transient regime is far simpler, because it is not necessary to introduce walls and the
calculation can be performed in infinite space. It would be worthwhile to compare
the theory for the transient regime with experiment and computer simulation.
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